TES/Aura L2 Ozone Nadir Special Observation V008

data.nasa.gov | Last Updated 17 Jan 2022

TL2O3NS_8 is the Tropospheric Emission Spectrometer (TES)/Aura Level 2 Ozone Nadir Special Observation Version 8 data product. TES was an instrument aboard NASA's Aura satellite and was launched from California on July 15, 2004. Data collection for TES is complete. It consisted of information for one molecular species for an entire Global Survey or Special Observation. TES Level 2 data contained retrieved species (or temperature) profiles at the observation targets and the estimated errors. The geolocation, quality and other data (e.g., surface characteristics for nadir observations) were also provided. L2 modeled spectra were evaluated using radiative transfer modeling algorithms. The process, referred to as retrieval, compared observed spectra to the modeled spectra and iteratively updated the atmospheric parameters. L2 standard product files included information for one molecular species (or temperature) for an entire global survey or special observation run. A global survey consisted of a maximum of 16 consecutive orbits. Nadir and limb observations were in separate L2 files, and a single ancillary file was composed of data that are common to both nadir and limb files. A nadir sequence within the TES Global Survey was a fixed number of observations within an orbit for a Global Survey. Prior to April 24, 2005, it consisted of two low resolution scans over the same ground locations. After April 24, 2005, Global Survey data consisted of three low resolution scans. The Nadir standard product consists of four files, where each file is composed of the Global Survey Nadir observations from one of four focal planes for a single orbit, i.e. 72 orbit sequences. The Global Survey Nadir observations only used a single set of filter mix. A Global Survey consists of observations along 16 consecutive orbits at the start of a two day cycle, over which 3,200 retrievals were performed. Each observation was the input for retrievals of species volume mixing ratios (VMRs), temperature profiles, surface temperature and other data parameters with associated pressure levels, precision, total error, vertical resolution, total column density and other diagnostic quantities. Each TES Level 2 standard product reported information in a swath format conforming to the HDF-EOS Aura File Format Guidelines. Each Swath object wa bounded by the number of observations in a global survey and a predefined set of pressure levels representing slices through the atmosphere. Each standard product could have had a variable number of observations depending upon the Global Survey configuration and whether averaging is employed. Also, missing or bad retrievals were not reported. The organization of data within the Swath object was based on a superset of the Upper Atmosphere Research Satellite (UARS) pressure levels that was used to report concentrations of trace atmospheric gases. The reporting grid was the same pressure grid used for modeling. There were 67 reporting levels from 1211.53 hPa, which allowed for very high surface pressure conditions, to 0.1 hPa, about 65 km. In addition, the products reported values directly at the surface when possible or at the observed cloud top level. Thus in the Standard Product files each observation could potentially contain estimates for the concentration of a particular molecule at 67 different pressure levels within the atmosphere. However, for most retrieved profiles, the highest pressure levels were not observed due to a surface at lower pressure or cloud obscuration. For pressure levels corresponding to altitudes below the cloud top or surface, where measurements were not possible, a fill value was applied. To minimize the duplication of information between the individual species standard products, data fields common to each species (such as spacecraft coordinates, emissivity, and other data fields) have been collected into a separate standard product, termed the TES L2 Ancillary Data product (ESDT short name: TL2ANC). Users of this product should also obtain the Ancillary Data product.

Tags: earth science, atmosphere, air quality, atmospheric chemistry, clouds, atmospheric temperature