TES/Aura L3 Ozone Daily Gridded V006

data.nasa.gov | Last Updated 17 Jan 2022

TL3O3D_6 is the Tropospheric Emission Spectrometer (TES)/Aura L3 Ozone Daily Gridded Version 6 data product. TES was an instrument aboard NASA's Aura satellite and was launched from California on July 15, 2004. Data collection for TES is complete. This data product consists of daily atmospheric temperature and volume mixing ratio (VMR) for the atmospheric species, which were provided at 2 degree latitude by 4 degree longitude spatial grids and at a subset of TES standard pressure levels. The TES Science Data Processing L3 subsystem interpolated the L2 atmospheric profiles collected in a Global Survey onto a global grid uniform in latitude and longitude to provide a 3-D representation of the distribution of atmospheric gasses. Daily and monthly averages of L2 profiles and browse images are available. The L3 standard data products were composed of L3 HDF-EOS grid data. A separate product file is produced for each different atmospheric species. TES obtains data in two basic observation modes: Limb or Nadir. The product file may have contained, in separate folders, limb data, nadir data, or both folders may be present. Specific to L3 processing are the terms Daily and Monthly representing the approximate time coverage of the L3 products. However, the input data granules to the L3 process are completed Global Surveys; in other words a Global Survey was not split in relation to time when input to the L3 processes even if they exceeded the usual understood meanings of a day or month. More specifically, Daily L3 products represented a single Global Survey (approximately 26 hours) and Monthly L3 products represented Global Surveys that were initiated within that calendar month. The data granules defined for L3 standard products were daily and monthly. Details of the format of this product can be found in the TES Data Products Specifications (DPS).

Tags: earth science, atmosphere, atmospheric chemistry, atmospheric temperature, atmospheric water vapor, atmospheric pressure, air quality