Combining Discrete Element Modeling, Finite Element Analysis, and Experimental Calibrations for Modeling of Granular Material Systems Project

nasa-test-0.demo.socrata.com | Last Updated 20 Jul 2015

The current state-of-the-art in DEM modeling has two major limitations which must be overcome to ensure that the technique can be useful to NASA engineers and the commercial sector: the computational intensive nature of the software, and the lack of an established methodology to determine the particle properties to best accurately model a given physical system. The proposed work will address both of these limitations. We will look at two approaches to overcome the particle count limitations of DEM: investigate the scaling up of particle size; and combine FEA and DEM to look at problems of densely packed solids. We will explore regimes where DEM and FEA are applicable and establish a coupling methodology that can be further developed during phase II. To address the lack of an established methodology to determine the particle properties to best accurately model a given physical system, we will investigate several small scale experiments that can be used to characterize DEM models. The proposed work will advance the state-of-the-art in DEM. At the end of phase I we will show the feasibility of developing modeling approaches to overcome the main limitations of DEM.

Tags: kennedy space center, project, completed