Auditory Presentation of H/OZ Critical Flight Data Project

nasa-test-0.demo.socrata.com | Last Updated 20 Jul 2015

Automation of a flight control system to perform functions normally attributed to humans is often not robust and limited to specific operating conditions and types of operation and a small set of fixed behaviors (i.e. modes). eSky has shown that metrics such as the time delay between a required control input from the crew and the actual input is sensitive to crew functional degradation through external distraction. We are currently developing strategies for using such crew state metrics to modulate the level of automation support provided to the flight crew. Dynamic reallocation of function between crew and automation can reduce the cognitive workload on the crew, enhance their ability to supervise the automation and help them intervene in the event of any failure or operation outside the desired operating conditions. eSky is exploring function reallocation in a collaborative flight control system (HFCS) design pioneered at NASA Langley. HFCS combines precise flight control automation with rudimentary intelligence that the flight crew can guide using relatively simple mechanisms. HFCS automation manages short-term control tasks (e.g. path following) while the crew is required to direct every significant trajectory change using flight controls rather than an FMS interface to keep them engaged in conduct of the flight. The automation communicates intentions to the pilot through visual and haptic (tactile) feedback; the crew communicates intentions to the automation through conventional controls. The HFCS user interface is primarily visual and tactile with limited auditory elements, mainly limited to a few alerts and warnings. eSky proposes to establish the auditory channel as a key element in providing flight dynamic information and cueing of required crew in puts in addition to envelope protection warnings. These new interface elements will be integrated into eSky's evolving strategies for functionality reallocation of between automation and crew.

Tags: langley research center, project, completed