Including the effects of a harsh radiation environment in the simulation and design of nanoelectronic devices and circuits Project

nasa-test-0.demo.socrata.com | Last Updated 20 Jul 2015

Nanoelectronic devices, and circuits based on such devices, are expected to be more susceptible to the effects of radiation than the previous generation of devices and circuits. Circuits that can operate in harsh radiation environments are essential components of commercial satellite communications systems, space exploration vehicles, and national defense systems. Hence there is a critical need to understand and quantify the effects of radiation on the present and next generation of nanoelectronic circuits, and to develop methods to render such circuits insensitive to radiation. In this project we intend to identify and characterize (as a function of device dimension if possible) the deleterious effects of radiation on nanoscale devices. More importantly, we intend to build on the standard models, which describe the effects of radiation, and develop software that would enable the modeling and simulation of radiation effects. First we will consider conventional nanoelectronic devices --- that is those where charge transport is based on the usual principles of drift and diffusion. Then a tool for the effects of radiation on single electron transistors and amplifiers (including those based on carbon nanotubes) would also be developed. Using the software, methods to mitigate the effects of radiation by rad-hard designs will be examined.

Tags: jet propulsion laboratory, project, completed