The land area of Memphis, MI was 1 in 2018.
Land Area
Water Area
Land area is a measurement providing the size, in square miles, of the land portions of geographic entities for which the Census Bureau tabulates and disseminates data. Area is calculated from the specific boundary recorded for each entity in the Census Bureau's geographic database. Land area is based on current information in the TIGER® data base, calculated for use with Census 2010.
Water Area figures include inland, coastal, Great Lakes, and territorial sea water. Inland water consists of any lake, reservoir, pond, or similar body of water that is recorded in the Census Bureau's geographic database. It also includes any river, creek, canal, stream, or similar feature that is recorded in that database as a two- dimensional feature (rather than as a single line). The portions of the oceans and related large embayments (such as Chesapeake Bay and Puget Sound), the Gulf of Mexico, and the Caribbean Sea that belong to the United States and its territories are classified as coastal and territorial waters; the Great Lakes are treated as a separate water entity. Rivers and bays that empty into these bodies of water are treated as inland water from the point beyond which they are narrower than 1 nautical mile across. Identification of land and inland, coastal, territorial, and Great Lakes waters is for data presentation purposes only and does not necessarily reflect their legal definitions.
Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API -
Geographic and Area Datasets Involving Memphis, MI
- API
Beach E. coli Predictions
data.cityofchicago.org | Last Updated 2024-09-03T04:55:05.000ZThe Chicago Park District issues swim advisories at beaches along Chicago's Lake Michigan lakefront based on E. coli levels. This dataset shows predicted E. coli levels based on an experimental analytical modeling approach.
- API
Beach Lab Data
data.cityofchicago.org | Last Updated 2024-09-04T19:00:17.000ZThe Chicago Park District collects and analyzes water samples from beaches along Chicago’s Lake Michigan lakefront. The Chicago Park District partners with the University of Illinois at Chicago Department of Public Health Laboratory to analyze water samples using a new DNA testing method called Rapid Testing Method (qPCR analysis) which tests for Enterococci in order to monitor swimming safety. The rapid testing method (qPCR analysis) is a new method that measures levels of pathogenic DNA in beach water. Unlike the culture based test that requires up to 24 hours of processing, the new rapid testing method requires a 4-5 hours for results. The Chicago Park District can use results of the rapid test to notify the public when levels exceed UPEPA recommended levels, which is 1000* CCE. When DNA bacteria levels exceed 1000 CCE, a yellow swim advisory flag is implemented. For more information please refer to the USEPA Recreational Water Quality Criteria (http://water.epa.gov/scitech/swguidance/standards/criteria/health/recreation). Historically, the Chicago Park District used the culture based analysis method and statistical prediction models to monitor beach water quality. The culture based method tests for Escherichia coli (E. coli) bacteria which is an indicator species for the presence of disease-causing bacteria, viruses, and protozoans that may pose health risks to the public. This method requires 18-24 hours of processing to receive results. The Chicago Park District would use results of the culture based method to notify the public when levels exceed UPEPA recommended levels, which is 235* CFU. When bacteria levels exceed 235 CFU, a yellow swim advisory flag was implemented. This standard is still used at most beaches throughout the Great Lakes region. For more information please refer to the USEPA Recreational Water Quality Criteria. The statistical prediction model forecasted real-time Escherichia coli (E. coli) bacteria levels present in the water. The Chicago Park District (CPD) in partnership with the US Geological Survey, developed statistical prediction models by using weather data pulled from CPD buoys (https://data.cityofchicago.org/d/qmqz-2xku) and weather stations (https://data.cityofchicago.org/d/k7hf-8y75). The Chicago Park District would use results of the predictive model to notify the public when bacteria levels would exceed 235 CFU. When bacteria levels exceed 235 CFU, a yellow swim advisory flag was implemented. * The unit of measurement for Escherichia coli is Colony Forming Units (CFU) per 100 milliliters of water. (Culture Based Method / Statistical Prediction Model) *The unit of measuring DNA is Enterococci Calibrator Cell Equivalents (CCE) per 100 milliliters of water. (Rapid Testing Analysis)
- API
MDOT Plant Manual for Slope Planting
data.michigan.gov | Last Updated 2024-05-28T13:03:58.000ZThis plant manual identifies plants and planting practices ideal for slope stabilization along urban highways. Appropriate plant selections are adapted to environmental stresses and harsh site conditions along depressed highway slopes found in urban areas. The plant selections also meet additional design criteria (e.g., low growing to allow clear vision, aesthetic appeal). This research was conducted by Michigan State University Department of Horticulture and Dr. Cregg. This research was funded and managed by the Michigan Department of Transportation, Nanette Alton and Yige Qu - Project Managers. This dataset is intended to be updated annually, as needed by roadside development staff. By using this dataset, you are accepting the terms of use attached. Dataset Owner Contact: MDOT-PlantManual@michigan.gov
- API
Assessor [Archived 05-31-2023] - Parcel Universe
datacatalog.cookcountyil.gov | Last Updated 2023-05-31T21:51:45.000ZA complete, historic universe of Cook County parcels with attached geographic, governmental, and spatial data. When working with Parcel Index Numbers (PINs) make sure to zero-pad them to 14 digits. Some datasets may lose leading zeros for PINs when downloaded. Additional notes:<ul><li>Data is attached via spatial join (st_contains) to each parcel's centroid.</li> <li>Centroids are based on <a href="https://datacatalog.cookcountyil.gov/Property-Taxation/ccgisdata-Parcel-2021/77tz-riq7">Cook County parcel shapefiles</a>.</li> <li>Older properties may be missing coordinates and thus also missing attached spatial data (usually they are missing a parcel boundary in the shapefile).</li> <li>Newer properties may be missing a mailing or property address, as they need to be assigned one by the postal service.</li> <li>Attached spatial data does NOT go all the way back to 1999. It is only available for more recent years, primarily those after 2012.</li> <li>The universe contains data for the current tax year, which may not be complete or final. PINs can still be added and removed to the universe up until the Board of Review closes appeals.</li> <li>Data will be updated monthly.</li> <li>Rowcount and characteristics for a given year are final once the Assessor <a href="https://www.cookcountyassessor.com/assessment-calendar-and-deadlines">has certified the assessment roll</a> for all townships.</li> <li>Depending on the time of year, some third-party and internal data will be missing for the most recent year. Assessments mailed this year represent values from last year, so this isn't an issue. By the time the Data Department models values for this year, those data will have populated.</li> <li>Current property class codes, their levels of assessment, and descriptions can be found <a href="https://prodassets.cookcountyassessor.com/s3fs-public/form_documents/classcode.pdf">on the Assessor's website</a>. Note that class codes details can change across time.</li> <li>Due to decrepencies between the systems used by the Assessor and Clerk's offices, <i>tax_district_code</i> is not currently up-to-date in this table.</li></ul> For more information on the sourcing of attached data and the preparation of this dataset, see the <a href="https://gitlab.com/ccao-data-science---modeling/data-architecture">Assessor's data architecture repo</a> on GitLab. <a href="https://datacatalog.cookcountyil.gov/stories/s/i22y-9sd2">Read about the Assessor's 2022 Open Data Refresh.</a>
- API
Agricultural Land Dynamics and Land Policy in Rural Tanzania 2016: Soil/Water Conservation Dataset
datahub.usaid.gov | Last Updated 2024-07-11T07:14:50.000ZThis dataset contains information about practices around soil and water conservation. The table can be combined with other datasets in this data asset using the 'hhid' column. The purpose of collecting these data was to examine farm expansion and labor markets in rural Tanzania. Data were collected in 8 rural districts of Tanzania: Mvomero, Kilombero, Njombe, Kiteto, Magu, Moshi Rural, Mkuranga and Liwale. The data were collected through the Feed the Future Innovation Lab for Food Security Policy (FSP).
- API
Resident Satisfaction Survey Results 2018
data.miamigov.com | Last Updated 2018-12-28T01:43:33.000Z