The population density of Mobile, AL was 1,406 in 2010. The population density of Montgomery, AL was 1,283 in 2010.
Population Density
Population Density is computed by dividing the total population by Land Area Per Square Mile.
Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API -
Geographic and Population Datasets Involving Mobile, AL or Montgomery, AL
- API
ASTDD Synopses of State Oral Health Programs - Selected indicators
data.cdc.gov | Last Updated 2023-08-25T15:12:55.000Z2011-2022. The ASTDD Synopses of State Oral Health Programs contain information useful in tracking states’ efforts to improve oral health and contributions to progress toward the national targets for Healthy People objectives for oral health. A subset of the information collected from the most recent five years is provided on the Oral Health Data website. For more information, see http://www.cdc.gov/oralhealthdata/overview/synopses/index.html
- API
Final Disadvantaged Communities (DAC) 2023
data.ny.gov | Last Updated 2024-07-01T16:29:21.000ZThe Climate Leadership and Community Protection Act (CLCPA) directs the Climate Justice Working Group (CJWG) to establish criteria for defining disadvantaged communities. This dataset identifies areas throughout the State that meet the final disadvantaged community definition as voted on by the Climate Justice Working Group. The New York State Energy Research and Development Authority (NYSERDA) offers objective information and analysis, innovative programs, technical expertise, and support to help New Yorkers increase energy efficiency, save money, use renewable energy, accelerate economic growth, and reduce reliance on fossil fuels. To learn more about NYSERDA’s programs, visit nyserda.ny.gov or follow us on X, Facebook, YouTube, or Instagram.
- API
Land Use_data
opendata.utah.gov | Last Updated 2024-04-10T19:40:16.000ZThis dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the Northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the Southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe’s Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe’s Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS.