The population density of New Plymouth, ID was 2,816 in 2015. The population density of Parma, ID was 2,058 in 2015.

Population Density

Population Density is computed by dividing the total population by Land Area Per Square Mile.

Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API - Notes:

1. ODN datasets and APIs are subject to change and may differ in format from the original source data in order to provide a user-friendly experience on this site.

2. To build your own apps using this data, see the ODN Dataset and API links.

3. If you use this derived data in an app, we ask that you provide a link somewhere in your applications to the Open Data Network with a citation that states: "Data for this application was provided by the Open Data Network" where "Open Data Network" links to http://opendatanetwork.com. Where an application has a region specific module, we ask that you add an additional line that states: "Data about REGIONX was provided by the Open Data Network." where REGIONX is an HREF with a name for a geographical region like "Seattle, WA" and the link points to this page URL, e.g. http://opendatanetwork.com/region/1600000US5363000/Seattle_WA

Geographic and Population Datasets Involving New Plymouth, ID or Parma, ID

  • API

    COVID-19 Cases by Zip Code

    citydata.mesaaz.gov | Last Updated 2024-10-16T21:00:37.000Z

    Information reported weekly by the Arizona Department of Health of confirmed COVID-19 cases by zip code and displayed here to better visualize the data. Direct REST Endpoint URL in Source Link field below. Statewide data available at https://www.azdhs.gov/preparedness/epidemiology-disease-control/infectious-disease-epidemiology/covid-19/dashboards/index.php.

  • API

    Waste Tire Abatement Sites

    data.ny.gov | Last Updated 2024-09-27T18:10:25.000Z

    Information on designated waste tire abatement sites in New York State, including approximate size, location, and abatement status.

  • API

    Land Use_data

    opendata.utah.gov | Last Updated 2024-04-10T19:40:16.000Z

    This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the Northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the Southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe’s Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe’s Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS.

  • API

    MTA Transit Oriented Development (TOD) Data

    opendata.maryland.gov | Last Updated 2024-03-25T15:38:10.000Z

    *** DISCLAIMER - This web page is a public resource of general information. The Maryland Mass Transit Administration (MTA) makes no warranty, representation, or guarantee as to the content, sequence, accuracy, timeliness, or completeness of any of the spatial data or database information provided herein. MTA and partner state, local, and other agencies shall assume no liability for errors, omissions, or inaccuracies in the information provided regardless of how caused; or any decision made or action taken or not taken by any person relying on any information or data furnished within. *** This dataset assesses rail station potential for different forms of transit oriented development (TOD). A key driver of increased transit ridership in Maryland, TOD capitalizes on existing rapid transit infrastructure. The online tool focuses on the MTA’s existing MARC Commuter Rail, Metro Subway, and Central Light Rail lines and includes information specific to each station. The goal of this dataset is to give MTA planning staff, developers, local governments, and transit riders a picture of how each MTA rail station could attract TOD investment. In order to make this assessment, MTA staff gathered data on characteristics that are likely to influence TOD potential. The station-specific data is organized into 6 different categories referring to transit activity; station facilities; parking provision and utilization; bicycle and pedestrian access; and local zoning and land availability around each station. As a publicly shared resource, this dataset can be used by local communities to identify and prioritize area improvements in coordination with the MTA that can help attract investment around rail stations. You can view an interactive version of this dataset at geodata.md.gov/tod. ** Ridership is calculated the following ways: Metro Rail ridership is based on Metro gate exit counts. Light Rail ridership is estimated using a statistical sampling process in line with FTA established guidelines, and approved by the FTA. MARC ridership is calculated using two (2) independent methods: Monthly Line level ridership is estimated using a statistical sampling process in line with FTA established guidelines, and approved by the FTA. This method of ridership calculation is used by the MTA for official reporting purposes to State level and Federal level reporting. Station level ridership is estimated by using person counts completed by the third party vendor. This method of calculation has not been verified by the FTA for statistical reporting and is used for scheduling purposes only. However, because of the granularity of detail, this information is useful for TOD applications. *Please note that the monthly level ridership and the station level ridership are calculated using two (2) independent methods that are not interchangeable and should not be compared for analysis purposes.

  • API

    E-Rate Supplemental Entity Information

    datahub.usac.org | Last Updated 2024-10-23T08:46:56.000Z

    This dataset contains E-Rate Productivity Center (EPC) information about schools, libraries, school districts, library systems, consortia, and non-instructional facilities (NIFs). For Annexes information, please refer to the "E-Rate Supplemental Entity Information: Annexes" dataset.

  • API

    AdvanceKC 2.0

    data.kcmo.org | Last Updated 2023-07-28T16:55:35.000Z

  • API

    AdvanceKC 2.0 Community Survey

    data.kcmo.org | Last Updated 2023-07-28T16:55:21.000Z

  • API

    NYC Building Energy and Water Data Disclosure for Local Law 84 (2022-Present)

    data.cityofnewyork.us | Last Updated 2024-10-01T19:56:35.000Z

    Local Law 84 of 2009 (LL84) requires annual energy and water benchmarking data to be submitted by owners of buildings with more than 50,000 square feet. This data is collected via the Environmental Protection Agency's (EPA) <a href="https://www.energystar.gov/buildings/tools-and-resources/portfolio-manager-0">Portfolio Manager website</a> Each property is identified by it's EPA assigned property ID, and can contain one or more tax lots identified by one or more BBLs (Borough, Block, Lot) or one or more buildings identified by one or more building identification numbers (BIN) Please visit <a href="https://www1.nyc.gov/site/buildings/codes/benchmarking.page">DOB's Benchmarking and Energy Efficiency Rating page</a> for additional information.