The population density of Mansfield Center, MA was 2,817 in 2016.

Population Density

Population Density is computed by dividing the total population by Land Area Per Square Mile.

Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API - Notes:

1. ODN datasets and APIs are subject to change and may differ in format from the original source data in order to provide a user-friendly experience on this site.

2. To build your own apps using this data, see the ODN Dataset and API links.

3. If you use this derived data in an app, we ask that you provide a link somewhere in your applications to the Open Data Network with a citation that states: "Data for this application was provided by the Open Data Network" where "Open Data Network" links to http://opendatanetwork.com. Where an application has a region specific module, we ask that you add an additional line that states: "Data about REGIONX was provided by the Open Data Network." where REGIONX is an HREF with a name for a geographical region like "Seattle, WA" and the link points to this page URL, e.g. http://opendatanetwork.com/region/1600000US5363000/Seattle_WA

Geographic and Population Datasets Involving Mansfield Center, MA

  • API

    Bronx Zip Population and Density

    bronx.lehman.cuny.edu | Last Updated 2012-10-21T14:06:17.000Z

    2010 Census Data on population, pop density, age and ethnicity per zip code

  • API

    Deer Tick Surveillance: Adults (Oct to Dec) excluding Powassan virus: Beginning 2008

    health.data.ny.gov | Last Updated 2024-05-01T18:05:44.000Z

    This dataset provides the results from collecting and testing adult deer ticks, also known as blacklegged ticks, or by their scientific name <i>Ixodes scapularis</i>. Collection and testing take place across New York State (excluding New York City) from October to December, when adult deer ticks are most commonly seen. Adult deer ticks are individually tested for different bacteria and parasites, which includes the bacteria responsible for Lyme disease. These data should simply be used to educate people that there is a risk of coming in contact with ticks and tick-borne diseases. These data only provide adult tick infections at a precise location and at one point in time. Both measures, tick population density and percentage, of ticks infected with the specified bacteria or parasite can vary greatly within a very small area and within a county. These data should not be used to broadly predict disease risk for a county. Further below on this page you can find links to tick prevention tips, a video on how to safely remove a tick, and more datasets with tick testing results. Interactive charts and maps provide an easier way to view the data.

  • API

    COVID-19 case rate per 100,000 population and percent test positivity in the last 7 days by town - ARCHIVE

    data.ct.gov | Last Updated 2023-08-02T16:11:04.000Z

    DPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, these metrics will be calculated using a 14-day average rather than a 7-day average. The new dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2 As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well. With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county). This dataset includes a weekly count and weekly rate per 100,000 population for COVID-19 cases, a weekly count of COVID-19 PCR diagnostic tests, and a weekly percent positivity rate for tests among people living in community settings. Dates are based on date of specimen collection (cases and positivity). A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case. These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities. These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020. Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.

  • API

    Deer Tick Surveillance: Nymphs (May to Sept) excluding Powassan virus: Beginning 2008

    health.data.ny.gov | Last Updated 2024-05-01T18:07:53.000Z

    This dataset provides the results from collecting and testing nymph deer ticks, also known as blacklegged ticks, or by their scientific name <i>Ixodes scapularis</i>. Collection and testing take place across New York State (excluding New York City) from May to September, when nymph deer ticks are most commonly seen. Nymph deer ticks are individually tested for different bacteria and parasites, which includes the bacteria responsible for Lyme disease. These data should simply be used to educate people that there is a risk of coming in contact with ticks and tick-borne diseases. These data only provide nymph tick infections at a precise location and at one point in time. Both measures, tick population density and percentage, of ticks infected with the specified bacteria or parasite can vary greatly within a very small area and within a county. These data should not be used to broadly predict disease risk for a county. Further below on this page you can find links to tick prevention tips, a video on how to safely remove a tick, and more datasets with tick testing results. Interactive charts and maps provide an easier way to view the data.

  • API

    Enhancing Microsimulation Models for Improved Work Zone Planning: Car-Following Data from Western Massachusetts (Instances)

    datahub.transportation.gov | Last Updated 2024-07-18T01:02:15.000Z

    The data describe freeway car-following behavior (such as velocity, acceleration, and relative position) for the car-following instances observed during 6 data collection runs, collected using an Instrumented Research Vehicle (IRV) along freeways and arterials in western Massachusetts in the summer of 2016 to better understand work zone driver behaviors. The USDOT Volpe National Transportation Systems Center (Volpe Center) identified, isolated, and classified individual car following instances from within the raw datasets (classification parameters included roadway type, level of congestion, and speed limit), then processed, refined, and cleaned the dataset. This table contains the car-following instances recorded by Volpe staff. See also the runs table (https://datahub.transportation.gov/Automobiles/Enhancing-Microsimulation-Models-for-Improved-Work/b3k6-qwyh) and radar table (https://datahub.transportation.gov/Automobiles/Enhancing-Microsimulation-Models-for-Improved-Work/4qbx-egtn).

  • API

    NCHS - Injury Mortality: United States

    data.cdc.gov | Last Updated 2022-03-30T14:55:56.000Z

    This dataset describes injury mortality in the United States beginning in 1999. Two concepts are included in the circumstances of an injury death: intent of injury and mechanism of injury. Intent of injury describes whether the injury was inflicted purposefully (intentional injury) and, if purposeful, whether the injury was self-inflicted (suicide or self-harm) or inflicted by another person (homicide). Injuries that were not purposefully inflicted are considered unintentional (accidental) injuries. Mechanism of injury describes the source of the energy transfer that resulted in physical or physiological harm to the body. Examples of mechanisms of injury include falls, motor vehicle traffic crashes, burns, poisonings, and drownings (1,2). Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia. Age-adjusted death rates (per 100,000 standard population) are based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of injury death are classified by the International Classification of Diseases, Tenth Revision (ICD–10). Categories of injury intent and injury mechanism generally follow the categories in the external-cause-of-injury mortality matrix (1,2). Cause-of-death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES 1. National Center for Health Statistics. ICD–10: External cause of injury mortality matrix. 2. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. 3. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf. 4. Miniño AM, Anderson RN, Fingerhut LA, Boudreault MA, Warner M. Deaths: Injuries, 2002. National vital statistics reports; vol 54 no 10. Hyattsville, MD: National Center for Health Statistics. 2006.

  • API

    CT School Learning Model Indicators by County (7-day metrics) - ARCHIVE

    data.ct.gov | Last Updated 2023-08-02T14:51:55.000Z

    DPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, the school learning model indicator metrics will be calculated using a 14-day average rather than a 7-day average. The new school learning model indicators dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/CT-School-Learning-Model-Indicators-by-County-14-d/e4bh-ax24 As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well. With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county). This dataset includes the leading and secondary metrics identified by the Connecticut Department of Health (DPH) and the Department of Education (CSDE) to support local district decision-making on the level of in-person, hybrid (blended), and remote learning model for Pre K-12 education. Data represent daily averages for each week by date of specimen collection (cases and positivity), date of hospital admission, or date of ED visit. Hospitalization data come from the Connecticut Hospital Association and are based on hospital location, not county of patient residence. COVID-19-like illness includes fever and cough or shortness of breath or difficulty breathing or the presence of coronavirus diagnosis code and excludes patients with influenza-like illness. All data are preliminary. These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020. These metrics were adapted from recommendations by the Harvard Global Institute and supplemented by existing DPH measures. For national data on COVID-19, see COVID View, the national weekly surveillance summary of U.S. COVID-19 activity, at https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.

  • API

    Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    data.cdc.gov | Last Updated 2023-07-20T16:01:58.000Z

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022. Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  • API

    Deer Tick Surveillance: Adults (Oct to Dec) Powassan Virus Only: Beginning 2009

    health.data.ny.gov | Last Updated 2024-05-01T18:04:12.000Z

    This dataset provides the results from collecting and testing adult deer ticks, also known as blacklegged ticks, or by their scientific name Ixodes scapularis. Collection and testing take place across New York State (excluding New York City) from October to December, when adult deer ticks are most commonly seen. Adult deer ticks are tested in “pools”, or groups of up to ten adult ticks per pool, for the Powassan virus, also known as Deer tick virus. These data should simply be used to educate people that there is a risk of coming in contact with ticks and tick-borne diseases. These data only provide adult tick minimum infection rates at a precise location and at a point in time. Both measures, tick population density and minimum infection percentages, can vary greatly within a very small area and within a county. These data should not be used to broadly predict disease risk for a county. Further below on this page you can find links to tick prevention tips, a video on how to safely remove a tick, and more datasets with tick testing results. Interactive charts and maps provide an easier way to view the data.

  • API

    Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Booster Dose

    data.cdc.gov | Last Updated 2023-06-09T00:47:32.000Z

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022. Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases