The land area of Hampton Beach, NH was 1 in 2018.

Land Area

Water Area

Land area is a measurement providing the size, in square miles, of the land portions of geographic entities for which the Census Bureau tabulates and disseminates data. Area is calculated from the specific boundary recorded for each entity in the Census Bureau's geographic database. Land area is based on current information in the TIGER® data base, calculated for use with Census 2010.

Water Area figures include inland, coastal, Great Lakes, and territorial sea water. Inland water consists of any lake, reservoir, pond, or similar body of water that is recorded in the Census Bureau's geographic database. It also includes any river, creek, canal, stream, or similar feature that is recorded in that database as a two- dimensional feature (rather than as a single line). The portions of the oceans and related large embayments (such as Chesapeake Bay and Puget Sound), the Gulf of Mexico, and the Caribbean Sea that belong to the United States and its territories are classified as coastal and territorial waters; the Great Lakes are treated as a separate water entity. Rivers and bays that empty into these bodies of water are treated as inland water from the point beyond which they are narrower than 1 nautical mile across. Identification of land and inland, coastal, territorial, and Great Lakes waters is for data presentation purposes only and does not necessarily reflect their legal definitions.

Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API - Notes:

1. ODN datasets and APIs are subject to change and may differ in format from the original source data in order to provide a user-friendly experience on this site.

2. To build your own apps using this data, see the ODN Dataset and API links.

3. If you use this derived data in an app, we ask that you provide a link somewhere in your applications to the Open Data Network with a citation that states: "Data for this application was provided by the Open Data Network" where "Open Data Network" links to http://opendatanetwork.com. Where an application has a region specific module, we ask that you add an additional line that states: "Data about REGIONX was provided by the Open Data Network." where REGIONX is an HREF with a name for a geographical region like "Seattle, WA" and the link points to this page URL, e.g. http://opendatanetwork.com/region/1600000US5363000/Seattle_WA

Geographic and Area Datasets Involving Hampton Beach, NH

  • API

    Beach Lab Data

    data.cityofchicago.org | Last Updated 2024-09-04T19:00:17.000Z

    The Chicago Park District collects and analyzes water samples from beaches along Chicago’s Lake Michigan lakefront. The Chicago Park District partners with the University of Illinois at Chicago Department of Public Health Laboratory to analyze water samples using a new DNA testing method called Rapid Testing Method (qPCR analysis) which tests for Enterococci in order to monitor swimming safety. The rapid testing method (qPCR analysis) is a new method that measures levels of pathogenic DNA in beach water. Unlike the culture based test that requires up to 24 hours of processing, the new rapid testing method requires a 4-5 hours for results. The Chicago Park District can use results of the rapid test to notify the public when levels exceed UPEPA recommended levels, which is 1000* CCE. When DNA bacteria levels exceed 1000 CCE, a yellow swim advisory flag is implemented. For more information please refer to the USEPA Recreational Water Quality Criteria (http://water.epa.gov/scitech/swguidance/standards/criteria/health/recreation). Historically, the Chicago Park District used the culture based analysis method and statistical prediction models to monitor beach water quality. The culture based method tests for Escherichia coli (E. coli) bacteria which is an indicator species for the presence of disease-causing bacteria, viruses, and protozoans that may pose health risks to the public. This method requires 18-24 hours of processing to receive results. The Chicago Park District would use results of the culture based method to notify the public when levels exceed UPEPA recommended levels, which is 235* CFU. When bacteria levels exceed 235 CFU, a yellow swim advisory flag was implemented. This standard is still used at most beaches throughout the Great Lakes region. For more information please refer to the USEPA Recreational Water Quality Criteria. The statistical prediction model forecasted real-time Escherichia coli (E. coli) bacteria levels present in the water. The Chicago Park District (CPD) in partnership with the US Geological Survey, developed statistical prediction models by using weather data pulled from CPD buoys (https://data.cityofchicago.org/d/qmqz-2xku) and weather stations (https://data.cityofchicago.org/d/k7hf-8y75). The Chicago Park District would use results of the predictive model to notify the public when bacteria levels would exceed 235 CFU. When bacteria levels exceed 235 CFU, a yellow swim advisory flag was implemented. * The unit of measurement for Escherichia coli is Colony Forming Units (CFU) per 100 milliliters of water. (Culture Based Method / Statistical Prediction Model) *The unit of measuring DNA is Enterococci Calibrator Cell Equivalents (CCE) per 100 milliliters of water. (Rapid Testing Analysis)

  • API

    Horseshoe Crab Spawning Survey

    data.delaware.gov | Last Updated 2022-10-06T19:41:25.000Z

    Delaware Bay shore survey data starting with 1999 which denotes peak spawning occurrences by day and lunar period, proportion of spawning in May (coinciding with shorebird stopovers), average water temperature, index values for female and male crabs per square meter by beach and bay-wide, the annual sex ratio, and index of abundance per beach.

  • API

    COE Parks and Amenities

    data.everettwa.gov | Last Updated 2023-02-15T22:17:22.000Z

    Data set Contains Address and Park Amentities

  • API

    County to CBSA Mapping for Large Metros

    data.bayareametro.gov | Last Updated 2022-08-26T07:12:04.000Z

    Data contains counties in the following list of CBSAS (per OMB Mar 2020 definition): Bay Area CBSAs: San Francisco-Oakland-Berkeley, CA San Jose-Sunnyvale-Santa Clara, CA Napa, CA Santa Rosa-Petaluma, CA Other CBSAs: Los Angeles-Long Beach-Anaheim, CA Washington-Arlington-Alexandria, DC-VA-MD-WV Denver-Aurora-Lakewood, CO Detroit-Warren-Dearborn, MI Philadelphia-Camden-Wilmington, PA-NJ-DE-MD Boston-Cambridge-Newton, MA-NH New York-Newark-Jersey City, NY-NJ-PA Phoenix-Mesa-Chandler, AZ Houston-The Woodlands-Sugar Land, TX Seattle-Tacoma-Bellevue, WA Atlanta-Sandy Springs-Alpharetta, GA Chicago-Naperville-Elgin, IL-IN-WI Austin-Round Rock-Georgetown, TX Dallas-Fort Worth-Arlington, TX Miami-Fort Lauderdale-Pompano Beach, FL

  • API

    State Parks

    data.pa.gov | Last Updated 2023-11-08T21:59:46.000Z

    PA State Parks Point Locations

  • API

    OLAS Population-based Water Stress and Risk Dataset for Latin America and the Caribbean

    mydata.iadb.org | Last Updated 2023-06-15T08:22:16.000Z

    LAC is the most water-rich region in the world by most metrics; however, water resource distribution throughout the region does not correspond demand. To understand water risk throughout the region, this dataset provides population and land area estimates for factors related to water risk, allowing users to explore vulnerability throughout the region to multiple dimensions of water risk. This dataset contains estimates of populations living in areas of water stress and risk in 27 countries in Latin America and the Caribbean (LAC) at the municipal level. The dataset contains categories of 18 factors related to water risk and 39 indices of water risk and population estimates within each with aggregations possible at the basin, state, country, and regional level. The population data used to generate this dataset were obtained from the WorldPop project 2020 UN-adjusted population projections, while estimates of water stress and risk come from WRI’s Aqueduct 3.0 Water Risk Framework. Municipal administrative boundaries are from the Database of Global Administrative Areas (GADM). For more information on the methodology users are invited to read IADB Technical Note IDB-TN-2411: “Scarcity in the Land of Plenty”, and WRIs “Aqueduct 3.0: Updated Decision-relevant Global Water Risk Indicators”. | https://www.wri.org/data/aqueduct-global-maps-30-data | | https://www.worldpop.org/ | | https://gadm.org/ |

  • API

    Strategic Measure_Austin's ParkScore ranking (absolute score and ranking among U.S. cities)

    datahub.austintexas.gov | Last Updated 2024-06-12T21:55:25.000Z

    The Austin Parks and Recreation System's ranking on the Trust for Public Land ParkScore Index. This index ranks the park systems of the 100 largest cities in the U.S. based on park acreage, park size, park funding, park access, and a variety of other factors. This data set supports HE.C.2 of SD23. View more details and insights related to this data set on the story page: https://data.austintexas.gov/stories/s/Austin-s-ParkScore-Ranking-absolute-score-and-rank/rnwr-4s4u/ *If a cell is blank, that means PARD did not have a response for that year or TPL removed the question for that

  • API

    Recreation & History Related Locations Statewide Current Various PA Agencies

    data.pa.gov | Last Updated 2024-10-25T07:07:08.000Z

    Various Groupings of Services for Pennsylvanians to find a service and information near any given address. These are in the Recreation & History group

  • API

    Liquefaction zones (HESS)

    data.bayareametro.gov | Last Updated 2023-06-09T23:59:16.000Z

    Liquefaction zones for development of the Parcel Inventory dataset for the Housing Element Site Selection (HESS) Pre-Screening Tool. This feature set is a subset of the complete feature set for the San Francisco Bay Region. It only provides features for areas at either High or Very High susceptibility to liquefaction. The features delineate different types and ages of Quaternary deposits for the region and their susceptibility to liquefaction. The data provides a framework for the architecture and history of the Quaternary sedimentary basins, which is used in estimating earthquake shaking. **This data set represents the entire San Francisco Bay Region by combining both Open-File Report 00-444 and Open-File Report 2006-1037 data. The area covered by Open-File Report 2006-1037 was erased from Open-File Report 00-444 and the two data sets were merged. A column has been added to the attribute table to label which report each polygon was originally from. Other than this supplemental information paragraph, all the metadata is from Open-File Report 2006-1037.** This report presents a map and database of Quaternary deposits and liquefaction susceptibility for the urban core of the San Francisco Bay region. It supercedes the equivalent area of U.S. Geological Survey Open-File Report 00-444 (Knudsen and others, 2000), which covers the larger nine-county San Francisco Bay region. The report consists of (1) a spatial database, (2) two small-scale colored maps (Quaternary deposits and liquefaction susceptibility), (3) a text describing the Quaternary map and liquefaction interpretation (part 3), and (4) a text introducing the report and describing the database (part 1). All parts of the report are digital; part 1 describes the database and digital files and how to obtain them by downloading across the internet. The nine counties surrounding San Francisco Bay straddle the San Andreas fault system, which exposes the region to serious earthquake hazard (Working Group on California Earthquake Probabilities, 1999). Much of the land adjacent to the Bay and the major rivers and streams is underlain by unconsolidated deposits that are particularly vulnerable to earthquake shaking and liquefaction of water-saturated granular sediment. This new map provides a consistent detailed treatment of the central part of the 9-county region in which much of the mapping of Open-File Report 00-444 was either at smaller (less detailed) scale or represented only preliminary revision of earlier work. Like Open-File Report 00-444, the current mapping uses geomorphic expression, pedogenic soils, inferred depositional environments, and geologic age to define and distinguish the map units. Further scrutiny of the factors controlling liquefaction susceptibility has led to some changes relative to Open-File Report 00-444: particularly the reclassification of San Francisco Bay mud (Qhbm) to have only MODERATE susceptibility and the rating of artificial fills according to the Quaternary map units inferred to underlie them (other than dams ? adf). The two colored maps provide a regional summary of the new mapping at a scale of 1:200,000, a scale that is sufficient to show the general distribution and relationships of the map units but not to distinguish the more detailed elements that are present in the database. The report is the product of cooperative work by the National Earthquake Hazards Reduction Program (NEHRP) and National Cooperative Geologic Mapping Program of the U.S. Geological Survey, William Lettis & Associates, Inc. (WLA), and the California Geological Survey. An earlier version was submitted to the U.S. Geological Survey by WLA as a final report for a NEHRP grant (Witter and others, 2005). The mapping has been carried out by WLA geologists under contract to the NEHRP Earthquake Program (Grant 99-HQ-GR-0095) and by the California Geological Survey. The original reports and data are available at Open-File Report 2006-1037 (https://pubs.usgs.gov/of/2006/